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Abstract
Photoelectron diffraction (PED) is an experimental technique widely used to
perform structural determinations of solid surfaces. Similarly to low-energy
electron diffraction (LEED), structural determination by PED requires a fitting
procedure between the experimental intensities and theoretical results obtained
through simulations. Multiple scattering has been shown to be an effective
approach for making such simulations. The quality of the fit can be quantified
through the so-called R-factor. Therefore, the fitting procedure is, indeed,
an R-factor minimization problem. However, the topography of the R-factor
as a function of the structural and non-structural surface parameters to be
determined is complex, and the task of finding the global minimum becomes
tough, particularly for complex structures in which many parameters have to be
adjusted. In this work we investigate the applicability of the genetic algorithm
(GA) global optimization method to this problem. The GA is based on the
evolution of species, and makes use of concepts such as crossover, elitism
and mutation to perform the search. We show results of its application in the
structural determination of three different systems: the Cu(111) surface through
the use of energy-scanned experimental curves; the Ag(110)–c(2 × 2)-Sb
system, in which a theory–theory fit was performed; and the Ag(111) surface for
which angle-scanned experimental curves were used. We conclude that the GA
is a highly efficient method to search for global minima in the optimization of
the parameters that best fit the experimental photoelectron diffraction intensities
to the theoretical ones.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Photoelectron diffraction [1, 2] (PED) is one of the most widely used experimental techniques
in surface atomic structural determination. Core-level electrons of the surface atoms are excited
by photons typically in the x-ray range and are scattered by the nearby surface atoms before
reaching the detector [1]. The diffracted intensities, usually measured as a function of the
photoelectron momentum (kinetic energy) and/or the angles between the analyzer and the
sample, contain rich information about the structural and non-structural surface parameters.
Theoretical simulations are required to extract those parameter values, because no direct
method is available to reliably and accurately determine those parameters. (More or less
direct holographic methods can produce less accurate results, but not reliably and not for all
surfaces [3].)

Multiple scattering (MS) theory is a computationally effective method to simulate
photoelectron diffraction patterns [4]. The MS method calculates the photoelectron diffraction
pattern as the coherent sum of the direct unscattered photoemission wave and the interference
contributions resulting from the MS of the direct wave with bulk and surface atoms. In most
cases, the solid is represented by a cluster of non-overlapping spherical muffin-tin potentials.
The diffraction pattern thus calculated obviously depends on the particular structural parameters
used to represent the system.

Several codes based on this method have been developed to make such simulations, such
as MSPHD [5], PAD [6], EDAC [7, 8], and MSCD [9]. Among them, let us briefly describe
the code we have used for the present calculations, namely the MSCD package. MSCD stands
for multiple scattering calculation of diffraction. It is a versatile and efficient code designed
to simulate photoelectron diffraction patterns in core-level photoemission from surfaces. The
code is based on MS calculations of the photoelectron patterns [10]. The Rehr–Albers separable
representation of spherical-wave propagators is used [11], and several fitting procedures are
available to obtain structural information on the system under study. Inelastic scattering of
electrons in their path inside the solid is taken into account in a phenomenological way.
Thermal vibrational effects are included using a Debye–Waller-type attenuation factor. The
crossing of the surface is modeled by a square-step potential barrier. Energy scans as well as
angular scans are easily calculated with this program.

In general, the agreement between calculated and experimental curves in the fitting process
is quantified through the so-called R-factor [10]. Hence, the structural determination becomes
an R-factor minimization problem. However, the R-factor topography presents, in general,
many local minima, so it is necessary to address the difficult problem of identifying the global
minimum. This is particularly true for complex systems, such as compound, reconstructed and
adsorbate-covered surfaces.

In the context of low-energy electron diffraction (LEED), which is similar to photoelectron
diffraction in its purpose and approach to solving surface structure, several schemes have
been explored for finding the global minimum: pattern search methods [12], simulated
annealing [13], fast simulated annealing [14–16], a modified random sampling algorithm [17]
and genetic algorithms [18].

In this paper, we present an implementation of the genetic algorithm (GA)
procedure [18, 19] to numerically solve the problem of finding the global minimum in the
multidimensional R-factor surface. The GA is a global optimization method based on the
evolution of species. The MSCD package is used to calculate the photoelectron diffraction
curves required in the optimization process. We have tested our procedure with three different
systems: (i) a clean Cu(111) surface, in which experimental energy scans are available, and five
fitting parameters were optimized; (ii) Ag(110)–c(2 × 2)-Sb, for which ‘pseudo-experimental’
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angular scans were generated by simulations using the MSCD code for the correct surface
structure found by Nascimento et al [20], with six structural parameters being fitted; and
(iii) Ag(111), for which experimental angle scans are available, and five parameters were
optimized. We have focused on the methodological aspects of the implementation, although
brief discussions of the resulting structural parameters of the surfaces mentioned are included
as well. Our conclusion is that the GA is a highly efficient method to search global minima
in the R-factor hypersurface, and thus to optimize the parameters that best fit experimental
photoelectron diffraction curves.

The paper is organized as follows. In section 2, the implementation is described. In
section 3, we show methodological results of several performance tests. In section 4, we discuss
the physical results obtained for the three tested systems, and include the fitted values obtained
for parameters such as interlayer spacing, variations of length of the surface unit cell vectors,
Debye temperature and inner potential. Section 5 includes a summary and the conclusions of
our work.

2. Implementation of the genetic algorithm method

2.1. General description of genetic algorithms

Genetic algorithms (GAs) form a class of a global search methods based on the evolution of
species. In the same way that living creatures change their fitness over time so as to better adapt
to the environment, the set of parameters in an optimization problem can evolve to become a
more adequate solution.

Many optimization methods are based on some form of ‘steepest descent’ [19]: they
typically start from a unique trial solution, and use function derivatives to decide on the search
direction. Numerical algorithms of this type usually converge to the nearest local minimum,
and there is no guarantee that the reached minimum is the global minimum of the function.
By contrast, a GA works with populations of solutions, starting the search from many different
trial solutions, comparing their function values and then generating new trial solutions that may
exist in very different parts of parameter space. Thus, it is able to roam throughout parameter
space and look for the global minimum.

A given surface structure is defined by a set of particular parameters and is treated as an
individual that is coded into a string of binary or real numbers, like chromosomes in living
organisms [18, 19]: the string completely defines the structure in question. A GA population
contains a pre-determined number of individuals, each characterized by its own binary or real
string. The initial population is often chosen randomly, although the actual values of the
parameters should be within a reasonable range. Search operators, or evolutionary devices,
act on the population: they choose some individuals to participate in crossover, elitism and
mutation processes.

The main GA search device is the crossover. In this process, pairs of individuals are chosen
to act as parents that will produce two children each for the next generation. Within each pair,
the two strings are typically cut in two pieces at a randomly chosen point and the pieces from
each parent exchanged to form two new mixed strings, the children. Thus a string AB and a
string YZ can become a string AZ and a string YB.

The hope is that at least one of the two new crossed-over strings will combine the ‘good’
features of the two parents and thus will be ‘better’ than either parent. To bias the search in this
direction, one adds evolutionary pressure toward improved children. This is achieved mainly
by selecting parents that have a relatively high level of fitness (i.e. a relatively good R-factor in
our case).

3



J. Phys.: Condens. Matter 19 (2007) 446002 M L Viana et al

Individuals generated by crossover present, in general, a better fitness than their ‘parents’,
but not always. The use of elitism or ‘cloning’ secures the survival of the best individual (or
individuals) from one generation to the next, by simply copying them into the next generation:
this avoids the risk of losing a good solution.

Mutation is commonly added to prevent the situation where all individuals of the
population are trapped in local minima: by randomly choosing some individuals from every
generation and changing, randomly again, some of the bits in their strings, these individuals
are modified and thus sent into random parts of parameter space. A ‘mutation rate’ is initially
chosen to determine how often the mutation device will act.

It should be noted that many variations of these processes have been proposed, hence the
plural designation ‘genetic algorithms’.

2.2. Codification

In the present implementation, our goal is to find a surface structural parameter set that
minimizes the R-factor. In other words, we look for the calculated intensity curves that offer
the best fit to the experimental curves. The agreement between the curves is measured through
an R-factor which is defined as [10]

R =
∑N

i=1(χci − χei )
2

∑N
i=1(χ

2
ci + χ2

ei )
, (1)

where χci and χei are calculated and experimental χ curves (i.e. normalized intensities),
respectively. The χ function is defined [10] as χ(θ, φ, K ) = I (θ,φ,K )−I0(θ,φ,K )

I0(θ,φ,K )
, where

I (θ, φ, K ) is the photoelectron intensity as a function of the polar (θ ) and azimuthal (φ)
angles and the kinetic energy K , and I0(θ, φ, K ) is the background intensity equal to the free
atomic photoemission cross-section. The index i refers to the set of parameters, θ , φ, and K ,
corresponding to the intensity point. In this way, the value N corresponds to the total number
of points, which is equal to the number of θ times the number of φ times the number of K .
We refer each trial structure to the ideally terminated bulk structure. In the case of adsorbate
layers the adsorbate atoms are placed according to the unit cell shown by the LEED pattern,
and their interlayer distances are usually taken to be the same as those of the substrate spacings
(for atoms with very different radii, one would make other choices). Then we search for the
set of displacements which minimize the R-factor. Thus, each individual of the population
represents a set of displacements that must be added to the respective bulk atomic coordinate.
The codification, required in the GA, was made through binary and real strings. For the simple
systems Cu(111) and Ag(111) we used the binary or classical codification. In this kind of
codification a given individual coordinate displacement (corresponding to one parameter to be
optimized) is coded in one segment of the full binary string that represents an individual. The
first bit of this segment represents the arithmetic sign of this displacement, while the remaining
bits of this segment represent its magnitude, as follows. Those remaining bits represent an
integer number. When all those bits are equal to 1 (one), the displacement is maximal: this
maximum value represents the largest physical displacement that we allow for this coordinate.
The ratio of the current value of this binary string segment to its maximum possible value is
the current displacement. Table 1 shows a typical binary string for an individual in a situation
where three parameters are optimized using eight bits for each of them. The first bit in each
segment, written in bold face, gives the sign of the displacement. The last seven bits represent
integer numbers in the range of 0–127, shown in the second row. Equation (2) shows how the
physical displacement is calculated, if the value �Ximax is the maximum displacement allowed
for the coordinate i . The number of bits in the representation can be increased if a higher
accuracy is required.
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Table 1. Typical binary string, ‘chromosome’, for an individual in a problem where three
parameters are optimized.

10 001 100 00 110 011 11 001 110
+12 −51 +78

Table 2. Typical real string representation or ‘chromosome’, for an individual in a problem where
three parameters are optimized.

Real string Physical displacement

−0.237 �X1 = −0.237 × �X1max

+0.866 �X2 = +0.866 × �X2max

+0.148 �X3 = +0.148 × �X3max

For the Ag(110)–c(2 × 2)-Sb system we used a codification with real numbers. Here the
string is formed by real numbers with values lying in the range from −1 to 1. The physical
displacement is equal to its corresponding real value in the string times a maximum allowed
displacement. Table 2 shows how the real representation works.

�X1 = + 12

127
× �X1max

�X2 = − 51

127
× �X2max

�X3 = + 78

127
× �X3max .

(2)

Both codifications are suitable for the PED structural determination problem. However,
the real codification does not require binary–decimal and decimal–binary encoding steps in the
algorithm and thus can speed up the calculation.

2.3. Step-by-step application of the GA to MSCD

Our implementation of the GA method for the photoelectron diffraction problem in the MSCD
code follows the general steps described below to determine the structural and non-structural
surface parameters, and is schematically illustrated in figure 1.

(i) An initial population of N individuals is chosen (N is an even number). Each individual
is a vector containing the P parameters to be optimized in the surface analysis of the
system. The value of each parameter is randomly chosen within a physically acceptable
range for that system. Each individual is coded as described in section 2.2 and its binary or
real string contains the displacements to be added to the parameters of a reference initial
surface structure.

(ii) The MSCD code calculates the theoretical photoelectron intensity curves for one
individual, which we call individual I. It starts from general information available about the
system, such as atomic phase shifts, radial matrices for the emitter atoms, atomic densities,
sample temperature, etc, but modifies the coordinates according to the displacements
related to individual I. It makes the comparison to the experimental curves, and returns
the R-factor value associated to individual I.

(iii) The probability of being selected for crossover is calculated based on the R-factor of the
individual. An individual with a lower R-factor has a higher chance to be selected for the
crossover process.

5



J. Phys.: Condens. Matter 19 (2007) 446002 M L Viana et al

Figure 1. Schematic flow chart of the genetic algorithm implemented for photoelectron diffraction
structural determination using the MSCD code.

(iv) The steps (ii), and (iii) are repeated for all other individuals in the population.

(v) The search stops here if the best R-factor has not decreased after a preset number of
generations or if a preset maximum number of generations is reached: the best individual
in the last generation is selected as the best solution. Otherwise, the best individual is
cloned to the next generation (by elitism) and the process continues.

(vi) N/2 pairs of individuals are chosen according to probabilities based on their R-factors
obtained in step (iii). The crossover process then creates N new individuals for the next
generation. The worst one is discarded, being replaced by the clone obtained in the
previous step.

(vii) A number between 0 and 1 is chosen randomly. If this number is smaller than a previously
chosen mutation rate, then a randomly chosen individual is subjected to the mutation
process.

(viii) The new generation is ready, and the process restarts at step (ii) for the new generation.

In the present calculations, we used a different stop criterion, because the solutions were
already known from other studies. We also know that our present analysis method reproduces
the prior solutions with good accuracy. So we know the best R-factors: 0.10 for Cu(111), 0.13
for Ag(111) and 0.05 for Ag(110)–c(2 ×2)-Sb. Thus, in the performance tests of the algorithm
presented in the next section we have stopped the search when the GA finds a R-factor within
5% of the above mentioned values.
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Figure 2. Average number of trial structures over eight different runs for populations with different
sizes using the clean Cu(111) system.

3. Methodological results

The performance of the GA method depends on the choice of initial parameters. The mutation
rate, the number of individuals to be cloned to the next generation and the number of individuals
in each generation (population size) affect the speed of the search process. High mutation
rates are not recommended, because of the randomness of the mutation process. Here, we
permitted one out of one hundred individuals to undergo mutation, which prevents the search
from becoming bound to local minima, without excessively randomizing the process. We have
always cloned only the single best individual to the next generation, allowing the remaining
ones to change by crossover. The correct choice for the population size N is not so clear:
increasing the number of individuals means that a larger number of different starting points is
investigated, and thus there is a higher probability of finding the global minimum in early
generations. On the other hand, calculating theoretical photoelectron intensity curves for
each individual requires much computational time and, in big populations, many of those
calculations are not used to create new generations. A balance between these opposite effects
is desirable.

We have therefore analyzed the number of structures that have to be investigated to
find the global minimum for different population sizes. Due to the random nature of the
initial population, an average over different runs is required. We performed calculations for
populations with 10, 20, 30, 40, and 50 individuals, averaging over eight different initial
populations for each of these populations. The clean Cu(111) system was used for these tests.
Details of the experimental photoemission measurements used in the optimization procedure
and discussion on the structural parameters obtained is provided in section 4. We optimized
five parameters, namely, the first three interlayer spacings, the Debye temperature and the inner
potential. Figure 2 shows the results. Twenty individuals appear to form a good population
size: a sample with N = 20 finds the global minimum by investigating a relatively small
number of structures. Since the Cu(111) structure was previously known, we considered that
the calculation was converged whenever the GA found the correct parameters within error bars
of 5%. Figure 3 shows, for five particular illustrative runs with different population sizes, the
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Figure 3. Best R-factor in each generation against the number of trial structures for the Cu(111)
system. These are particular illustrative runs for different population sizes.

Figure 4. Best R-factor on each generation against the number of trial structures for the Ag(110)–
c(2 × 2)-Sb system. These are particular illustrative runs for different initial populations, each
consisting of 20 individuals.

R-factor of the best individual in each generation plotted against the number of previously tried
structures for the Cu(111) system. As a general rule, larger values of N imply a lower final
value of the R-factor.

Figure 4 shows the R-factor of the best individual for each generation for the Ag(110)–
c(2 × 2)-Sb system, in which real codification was implemented. Five particular illustrative
runs, all of them using 20 individuals in the population, are presented. When comparing the full
circle/red curve (for 20 individuals) in figure 3 to the curves in figure 4 we can observe a similar
behavior converging around 250 tried structures; however, in the second test six parameters
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Figure 5. Scaling behavior for the genetic algorithm method applied to the photoelectron diffraction
structural determination of the Ag(110)–c(2 × 2)-Sb system.

were fitted versus five in the first test, suggesting that the real codification showed a slightly
better performance.

An important test to evaluate the performance of an optimization method is to analyze the
way in which the number of trials needed to find the minimum increases when the number of
parameters to be optimized grows. In other words, it is important to establish a scaling behavior
for the method. For this purpose, we used compared theory to theory for the Ag(110)–c(2×2)-
Sb system. We started with six parameters and determined the optimal values for the surface
coordinates, which are shown in table 4 of section 4. Then we fixed the sixth coordinate in
the optimal position and optimized five parameters. Keeping the fifth and the sixth coordinates
fixed, we optimized four parameters and we proceeded in the same way for three, two and one
parameter(s). For each number of optimized parameters we performed ten runs, starting from
different initial populations and taking an average number of trial structures, as is shown in the
figure 5. It can be observed that the number of trial structures is not a linear function of the
number of optimized parameters if all points of the curve are taken into account. However,
we can split the curve into two different regions, from one to three parameters (where a linear
dependence is seen), and from four to six parameters (where the dependence is still linear
but the slope is larger). Taking into account all points, a fitting to y = Ax B , results in a
exponent B = 1.6 ± 0.2. In order to understand what this value means we can compare it
with previous scaling factors obtained for LEED structural analysis. Direct-search algorithms
exhibit approximately an N2 scaling [21], where N is the number of parameters. The first
application of the simulated annealing method to the LEED problem performed by Rous [13]
suggested an N6 scaling. The global search method proposed by Kottcke and Heinz [17]
resulted in an N2.5 scaling. The work of Nascimento and co-workers [14, 15] concerning
the fast simulated annealing approach, has obtained an N1 scaling. Döll and Van Hove have
investigated the application of the genetic algorithm to the LEED problem [18], but the scaling
behavior was not analyzed. We can conclude that the N1.6 scaling obtained for PED analysis
in the present work is a satisfactory behavior for the computational time as a function of the
number of parameters to be optimized. However, it is necessary to say that the scaling behavior
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Table 3. Structural determination results for the Cu(111) system.

GA-MSCD ECT [23] EAM [23, 26] LEED [25]

Inner potential (eV) 3.5 — — —
Debye temperature (K) 450 — 216 —
�d12 (%) −1.4 −3.1 −1.4 −0.7 ± 0.5
�d23 (%) −0.4 +1.9 −0.05 —
R-factor 0.10 — — 0.13 ± 0.03

Table 4. Structural determination results for the Ag(110)–c(2 × 2)-Sb system. The arrows for the
rumple results indicate in which direction the Sb atoms move (up = out, down = in). The per cent
values relate to the interlayer bulk distances.

Parameter LEED [20] GA-MSCD (theory versus theory)

�ZAgSb (rumple) (↓ 0.05 ± 0.05) Å(↓ 4.2%) ↓ 0.06 Å(↓ 4.2%)

d12(�d12) (1.37 ± 0.04) Å(−5.3%) 1.37 Å(−5.3%)

d23(�d23) (1.48 ± 0.04) Å(+2.5%) 1.45 Å(+2.4%)

dbulk 1.4443 Å 1.4443 Å
�D1 (160 ± 60) K 160 K
�D2 (170 ± 100) K 160 K
�bulk 225 K 160 K

was performed using just ten different runs, and better statistics could present a different
behavior.

4. Structural determination results

In order to show that the genetic algorithm method can find the correct structural and non-
structural surface parameters, we present, in this section, the results for the three analyzed
systems, and we make a comparison with previous results for two of them.

The first tested structure was the clean Cu(111) surface. For this purpose, we used the
energy-scanned experimental curves obtained by the group of Shirley5. Measurements were
made at 80 K. The photoelectrons were excited from the Cu 3s core level using photons
in the energy range 203.1–657.3 eV at normal incidence. Our theoretical simulation was
performed using a cluster of 150 atoms, with eighth order of multiple scattering and second
order of the Rehr–Albers separable representation. For this structure, five parameters were
optimized: the first three interlayer spacings, the Cu Debye temperature and the inner potential.
Table 3 shows the results obtained using our GA-MSCD fitting procedure and compares them to
previous results: theoretical, namely ECT (equivalent crystal theory) [23] and EAM (embedded
atom methods) [24], and experimental, namely LEED (low-energy electron diffraction) [25].
We note that the R-factors obtained in LEED and in GA-MSCD in table 3 are not directly
comparable, as they are defined in different ways for the two methods. The R-factor for PED is
defined in equation (1) and the definition for LEED can be found in [18]. The spacing changes
�dn,n+1(%) shown in tables 3, 4, and 5 are relative to the bulk interlayer spacing of Cu(111),
Ag(110), and Ag(111) respectively. Good agreement with previous results for some structural
parameters is found: in particular, there is a small contraction of the spacing between the first
and the second atomic layers. The same agreement is not found for the Debye temperature.
Nevertheless, it is necessary to remember that the MSCD package defines a cluster Debye
temperature, different from others approaches that treat the Debye temperature in the bulk and

5 The data were obtained by the group of D A Shirley in the Advanced Light Source of Lawrence Berkeley National
Laboratory, and are included in the documentation of the MSCD package. See [22].
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Figure 6. Normalized PED intensities (χ functions) for the Cu(111) system. The first curve
was theoretically generated by the MSCD code from the structure found by the GA; the second
is the experimental one; the third curve, theoretical, is a further local optimization starting from the
structure found by the GA, used to test the local optimization of the GA search itself.

Table 5. Structural determination results for the Ag(111) system.

GA-MSCD ECT [23] EAM [23, 26] LEED [28] DFT [27]

Inner potential (eV) 4.36 — — — —
Debye temperature (K) 130 — 143 160 —
�d12 (%) −0.8 −2.5 −1.3 −(0.5 ± 0.4) −0.3
�d23 (%) +0.1 +1.6 −0.04 −(0.4 ± 1.2) 0.04
R-factor 0.13 — — 0.18 —

the outermost layers separately. To verify our implementation of the GA and its convergence,
we performed, after the global GA optimization, a separate local optimization starting from
the structure found by the GA. The R-factor did not decrease, showing that, at least for this
simple system, the GA was able to find not only the deeper well, as was expected, but also
the minimum inside the well. Figure 6 shows the χ function, or the normalized PED intensity
from which was subtracted the background intensity for the experimental curve, as well as for
the simulated curve obtained by the GA fitting procedure and for the simulated curve obtained
after the refinement through local methods. As it was mentioned before, the refinement did not
make the R-factor decrease, because the simulated curves in figure 6 are so similar. This is a
remarkable example of the efficiency of the GA procedure, that it is not only able to find the
global minimum, but also locally reaches the best fitting parameters with high accuracy.

In order to establish a scaling behavior for the GA method, described in the previous
section, we performed a second test using a theory–theory comparison for the Ag(110)–
c(2 × 2)-Sb system. In a theory–theory comparison the method should be able to obtain an R-
factor equal to or very near to zero. Nascimento et al [20] have performed a structural analysis
by LEED for the Ag(110)–c(2 × 2)-Sb system, exploring six different structural models for
0.5 monolayers of Sb on a Ag(110) substrate. Their results showed that the substitutional first
layer model (shown in figure 7) best fits the experimental data; its structural parameters are
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Figure 7. First layer substitutional model for 0.5 monolayers of Sb (white circles) deposited on the
Ag(110) (dark/blue circles) substrate.

presented in table 4. Therefore we used the LEED results as the input structure for an MSCD
calculation to create ‘pseudo-experimental’ angular scan PED curves for polar angles varying
from 5◦ to 80◦ with a step of 5◦ and azimuthal angles varying from 0 to 90◦ with a step of 3◦.
We performed this simulation using a cluster of 180 atoms. We simulated photoelectrons being
excited from several different core levels, but the Sb 3d level excited by a simulated radiation
source of 600 eV showed the greatest sensitivity to the surface structural parameters. Therefore,
we used only this level in our calculations (as could also be done in the experiment). We used
eighth order of multiple scattering and second order of Rehr–Albers separable representation.
Once the ‘pseudo-experimental’ PED curves were simulated we started the GA search process
from the bulk values for the surface parameters, placing the Sb atoms at the same positions
as the Ag atoms which they replace. After about 400 trials the GA could find the correct
values with a very good accuracy, obtaining an R-factor of 0.04. The structural parameters are
presented in table 4. Figure 8 shows the ‘pseudo-experimental’ pattern and the one found by
the GA. A very good agreement between the patterns can be seen.

The third test performed was for clean Ag(111). For this system, experimental angular
scans are available; the experiment was performed at room temperature6. The photoelectrons
were excited from the Ag 3d core level by 750 eV photons. The scans were performed for
polar angles varying from 15◦ to 55◦, with a step of 5◦, and azimuthal angles from 0◦ to 129◦,
with step of 3◦. The theoretical simulation was performed using a cluster of 200 atoms, eighth
order of multiple scattering, and second order of Rehr–Albers separable representation. For
this structure, five parameters were optimized: the three first interlayer spacings, the cluster
Debye temperature and the inner potential. We found good agreement with previous results for
this system. Table 5 compares our results to the previous ones obtained by ECT (equivalent
crystal theory), EAM (embedded atom methods), LEED (low-energy electron diffraction), and
DFT (density functional theory) [27]. In figure 9, we can see the nice agreement between the
experimental and calculated PED diffraction patterns.

6 Laboratório Nacional de Luz Sı́ncrontron, Campinas-SP, Brazil.
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Figure 8. ‘Pseudo experimental’ (left) and calculated (right) PED diffraction patterns for Sb 3d
emission from the Ag(110)–c(2 × 2)-Sb system. The angles θ and φ are the polar and azimuthal
angles between the analyzer and the sample. The white holes at the centers of the figures result from
starting the simulations at θ = 3◦.

Figure 9. Experimental (left) and calculated (right) PED diffraction patterns for the Ag 3d emitter
for the clean Ag(111) system. The angles θ an φ are the polar and azimuthal angles between the
analyzer and the sample. The white holes at the center of the figures arise because the simulations
were performed beginning at θ = 15◦.

5. Summary and conclusions

Surface atomic structural determination by photoelectron diffraction relies on theoretical
simulation for reliable and accurate results. Especially for complex surface structures, global
optimization methods are necessary to fit the theoretical to the experimental curves. In this
paper, we have explored the use of the GA procedure to reach this goal. The speed of the
optimization process depends on an adequate choice of the initial GA parameters, such as
population size and mutation and elitism rates. Three structures were successfully solved using
the GA approach: clean Cu(111), Ag(110)–c(2 × 2)-Sb and Ag(111). We have compared the

13
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performance of the GA with local optimization methods for the first and third systems. We
note that the R-factor obtained is similar. We may conclude that the combination of global
search methods, such as GA, and efficient photoelectron diffraction codes, such as the MSCD
package, can be extremely useful in the determination of surface structures from photoelectron
diffraction experimental data. This is of particular importance for complex surfaces, in which
many structural parameters are needed to describe the complete surface structure.
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[18] Döll R and Van Hove M A 1996 Surf. Sci. 335 L393–8
[19] Scales J A, Smith M L and Fischer T L 1992 J. Comput. Phys. 103 258–68
[20] Nascimento V B, Paniago R, de Siervo A, de Castilho C M C, Landers R, Soares E A and de Carvalho V E 2004

Surf. Sci. 572 337–46
[21] Rous P J, Van Hove M A and Somorjai G A 1990 Surf. Sci. 226 15
[22] http://www.sitp.lbl.gov/mscdpack
[23] Smith J R, Perry T, Banerjea A, Ferrante J and Bozzolo G 1991 Phys. Rev. B 44 6444
[24] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443–53
[25] Lindgren S A, Wallden L, Rundgren J and Westrin P 1984 Phys. Rev. B 29 576
[26] Al-Rawi A N, Kara A and Rahman T S 2002 Phys. Rev. B 66 165439
[27] Wang Y, Wang W, Fan K-N and Deng J 2001 Surf. Sci. 490 125–32
[28] Soares E A, Leatherman G S, Diehl R D and Van Hove M A 2000 Surf. Sci. 468 129–36

14

http://dx.doi.org/10.1016/j.nima.2005.05.009
http://dx.doi.org/10.1016/0039-6028(95)00076-3
http://dx.doi.org/10.1016/S0079-6816(97)00013-0
http://dx.doi.org/10.1016/S0010-4655(00)00145-4
http://dx.doi.org/10.1016/S0010-4655(98)00031-9
http://dx.doi.org/10.1103/PhysRevB.63.075404
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://csic.sw.ehu.es/jga/software/edac
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://dx.doi.org/10.1103/PhysRevB.58.13121
http://dx.doi.org/10.1103/PhysRevB.41.8139
http://dx.doi.org/10.1088/0953-8984/18/39/002
http://dx.doi.org/10.1016/0039-6028(93)90030-N
http://dx.doi.org/10.1142/S0218625X99000639
http://dx.doi.org/10.1016/S0039-6028(01)01096-2
http://dx.doi.org/10.1103/PhysRevB.68.245408
http://dx.doi.org/10.1016/S0039-6028(96)01307-6
http://dx.doi.org/10.1016/0039-6028(96)00608-5
http://dx.doi.org/10.1016/0021-9991(92)90400-S
http://dx.doi.org/10.1016/j.susc.2004.09.005
http://dx.doi.org/10.1016/0039-6028(90)90149-3
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://www.sitp.lbl.gov/mscdpack
http://dx.doi.org/10.1103/PhysRevB.44.6444
http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/10.1103/PhysRevB.29.576
http://dx.doi.org/10.1103/PhysRevB.66.165439
http://dx.doi.org/10.1016/S0039-6028(01)01320-6
http://dx.doi.org/10.1016/S0039-6028(00)00806-2

	1. Introduction
	2. Implementation of the genetic algorithm method
	2.1. General description of genetic algorithms
	2.2. Codification
	2.3. Step-by-step application of the GA to MSCD

	3. Methodological results
	4. Structural determination results
	5. Summary and conclusions
	Acknowledgments
	References

